
Scientific Computing on Graphics
Processing Units

SF13 JULY 31, 2013

ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 1

Nicholas Frontiere
ANL/University of

Chicago
ATPESC

Overview
�  GPU vs. CPU

�  CUDA vs. OpenCL (Briefly)

�  OpenCL execution and memory framework

�  GPU Hardware

�  GPU Coding Obstacles and Solutions
�  Lock in Step execution (divergent if ’s)

�  Memory Latency

�  Coalesced Memory

�  Bank Conflicts

�  N-Body Example

�  Conclusion

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 2

GPU vs. CPU

*D. Kirk & W. Hwu 2010

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 3

CPU
�  Follows the “multicore” design of a microprocessor

�  Attempt to increase the speed of sequential programs.
�  Example Intel i7 processor.

�  Optimized to handle out of order execution
�  Retains multilevel cache for quick memory access
�  Implements sophisticated branch prediction
�  Multiple cores allow for increased multi-tasking as well as threading

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 4

GPU
�  Follows the “many-core” design of a microprocessor

�  Maximize throughput of parallel algorithms.

�  Typically the number of cores doubles with each new generation
�  Same is true for CPUs, yet GPU’s have many many more cores.

�  Throughput of Single Precision has increased dramatically

*http://docs.nvidia.com/

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 5

Would you rather outsource to a

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 6

Question

Low Latency
Good Throughput

High Latency
Low Throughput

Capable Contractor Grad Student

BUT what about MORE grad students?

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 7

Question

BUT what about MORE grad students?

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 8

Low Latency
Good Throughput

Ok Latency
High Throughput

GPU vs. CPU

Do NOT forget
Amdahl’s law

SF13 JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 9

n− Number of Threads
T −Execution Time
F − Serial Fraction

Speedup = T (1)
T (n)

=
1

F + (1−F)
n

Take Away

Completely limited by the
Serial Fraction!

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 10

� Examples of GPU accelerated code:
� Matrix multiplication, Graphics, Tabular

applications, Visual Reduction, etc.

OpenCL vs. Cuda

�  Both languages capable of executing GPU kernels.

�  CUDA is vendor dependent (Nvidia GPUs)

�  OpenCL can run on many different heterogeneous platforms (CPU,
GPU, DSP, etc)

�  CUDA is more mature and as a result has highly optimized libraries

�  OpenCL would be considered a “lower level” language and thus harder
to code.

�  Which to choose?
�  Depends on what you want to do, what platforms you want to use, and the targeted

users.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 11

OpenCL Platform Model

�  Host code (CPU)
�  Device Queries and Platform Setups (allows one to use multiple devices)

�  Push/pull memory to/from device (GPU)

�  Compile and Launch Kernel(s)

�  Typically performs the branched logic of the application

�  Kernel Code (GPU)
�  Run on the “Compute unit” (GPU)

�  Executed on each thread

�  Reads/Writes to Device memory (GPU DRAM)

�  Has NO access to Host (CPU) memory

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 12

__kernel void addTwoArrays(__global float * arr, __global float* arr2,
 __global float * return)

{
 return[get_global_id(0)]=arr[get_global_id(0)]
 +arr2[get_global_id(0)];
}

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 13

 // Create an OpenCL context on first available platform
 context = CreateContext();

 // Create a command-queue on the first device available on the created context
 commandQueue = CreateCommandQueue(context, &device);

 // Create OpenCL program from HelloWorld.cl kernel source
 program = CreateProgram(context, device, "HelloWorld.cl");
 // Create OpenCL kernel
 kernel = clCreateKernel(program, "hello_kernel", NULL);

 // Set the kernel arguments (result, a, b)
 errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]);
 errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]);
 errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &memObjects[2]);
 size_t globalWorkSize[1] = { ARRAY_SIZE };
 size_t localWorkSize[1] = { 1 };

 // Queue the kernel up for execution across the array
 errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL,
 globalWorkSize, localWorkSize,
 0, NULL, NULL);
 // Read the output buffer back to the Host
 errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], CL_TRUE,
 0, ARRAY_SIZE * sizeof(float), result,
 0, NULL, NULL);

OpenCL Kernel Execution
�  Kernels get executed by threads or “work items.” Each item is assigned

a “global index (id)”

�  These work items are collected as “work groups,” and assigned a “group
id” and “local id”

�  These id’s allow the kernel code to perform thread, group, or global
specific tasks.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 14

 (0,0)
 (0,0)

 (0,1)
 (0,1)

 (0,0)
 (0,2)

 (0,1)
 (0,3)

 (0,0)
 (0,4)

 (0,1)
 (0,5)

 (0,0)
 (0,6)

 (0,1)
 (0,7)

 (1,0)
 (1,0)

 (1,1)
 (1,1)

 (1,0)
 (1,2)

 (1,1)
 (1,3)

 (1,0)
 (1,4)

 (1,1)
 (1,5)

 (1,0)
 (1,6)

 (1,1)
 (1,7)

 (0,0)
 (2,0)

 (0,1)
 (2,1)

 (0,0)
 (2,2)

 (0,1)
 (2,3)

 (0,0)
 (2,4)

 (0,1)
 (2,5)

 (0,0)
 (2,6)

 (0,1)
 (2,7)

 (1,0)
 (3,0)

 (1,1)
 (3,1)

 (1,0)
 (3,2)

 (1,1)
 (3,3)

 (1,0)
 (3,4)

 (1,1)
 (3,5)

 (1,0)
 (3,6)

 (1,1)
 (3,7)

Local Id

Global Id

 0 1 2 3

 4 5 6 7

Group Id

OpenCL Memory Hierarchy
� __Global Memory: Available to all work items; high latency

fetching (hundreds of cycles).

� __Constant Memory: Read only memory, low latency.

� __Local Memory: Available to a group of threads, fast
fetching

� __Private Memory: Available to each thread

� Host (CPU) Global Memory: Not accessible to device
threads. Needs to be pushed by host code to device. High
latency

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 15

Global Memory

Global Memory/Constant Memory Cache

Local Memory

Private
memory

Private
memory

Work
Item 1

Work
Item N

Work Group 1

Private
memory

Private
memory

Work
Item 1

Work
Item N

Work Group M

Local Memory

 Host

Device

.

GPU Hardware

SF13 JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 16

GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

GPU Hardware

�  Each Work-Item (thread) is executed on a Stream Processor (SP)

�  SPs are located on one Stream Multiprocessor (SM or SMX)
�  Work-Groups are executed on SM’s, where local memory is provided.

�  Warp Schedulers execute threads of Work-groups on the SM’s; a
common optimization goal is to execute as many “warps” on each SM
as possible.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 17

GPU Execution Model (SIMT)

�  Work Groups are executed via 32 thread launches (aka Warps)

�  Warps follow Single Instruction Multiple Threading (i.e. all threads in a
warp perform the SAME instruction); Optimization implications, will
come back to this.

�  Multiple warps can be executed concurrently on the same SM, aka
“waves.” Keplar GPU’s can schedule 4 warps concurrently. However the
maximum number of warps will not always launch; Depends on
memory , number of threads per warp, number of threads per group,
etc.

�  Tails: If groups are not divisible by warp size, can affect performance.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 18

GPU Hardware

SF13 JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 19

GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 20

GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

GPU obstacle:
Shortage of Memory

�  Copying memory from the host CPU to GPU is a necessary step in all
GPU kernel applications.

�  Unfortunately, GPUs can only store a couple GBs of memory in total;
even state-of-the-art Kepler can only hold around 8 GBs. Many
applications require more, and as a result employ continuous reading
and writing to the GPU. This can typically result in transfer latency
performance hits.

�  Possible solution: Simultaneously copy memory to the GPU while
performing calculations on the previous memory transfer.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 21

Lock-Step Execution
�  Simple example is a divergent IF statemet:

�  SIMT ensures that when a warp of threads is launched for a work-group
and encounters the above statement, both branches are executed
(BAD).

�  Two Solutions:
�  A) DON’T DO IT!

�  B) Make the branched logic modulo warp size.

�  Regardless should play around with group size

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 22

If(get_local_id (0) < 4) {
 Do something
 } else {
 Do something else
 }

Memory Latency

�  Fetching global memory requires many latency cycles (~ hundreds), and
a result is one of the biggest performance hits.

�  Local Memory on the other hand has much less latency cycles (~tens)
but can have bank conflicts (described later)

�  Solutions:
�  A) Hide latency with arithmetic calculation; while threads are waiting for a memory

transfer other warps can be launched to do calculations. Depends on algorithm.

�  B) Do one copy from global to local memory and use the local memory speed to
distribute the data. Can make use of Coalesced memory. NOTE: Global memory has
GBs of data, whereas the local memory per SM has KBs. Very important to proceed
this way if original fetch was going to be non-coalesced.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 23

__kernel void addTwoArrays(__global float * arr, __global float* arr2,
 __global float * return)

{
 return[get_global_id(0)]=arr[get_global_id(0)]
 +arr2[get_global_id(0)];
}

Coalesced Memory Transfer
�  If memory is accessed non-contiguously, memory fetches will be

performed sequentially (BAD if from global memory)

�  If desired memory fetches are coalesced, the GPU can perform them all
at once (modulo half warp size).

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 24

Threads (id)

Memory

Newly Allowed

Bank Conflicts
�  To avoid multiple global memory latencies, one can copy data to Local

Memory for quick access. However, Local Memory is fetched with banks.

�  Banks contain 4 bytes (Fermi) or 8 bytes (Kepler) of memory.

�  GPUs typically contain 32 banks per SM

�  If threads access different memory elements, then all fetches occur at
maximum speed (GOOD). Otherwise, fetches are sequential (BAD).
Exception: Broadcast to all threads is fast, can be very powerful

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 25

4-8
bytes

Broadcast

NVDIA OpenCL Visual Profiler

� Can profile kernel execution time, as well as host data
transfer time.

� Can analyze memory bandwidth and instruction issue rate.

� Can report number of coalesced loads/stores

� Occupancy
�  Ratio of active warps per SM to maximum allowed.
�  Very informative measure of performance.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 26

Exemplar: Short Range Force Solver

�  Our N-body PM solver can resolve forces to ~ 3 grid units. We then require
a short range solver to increase the resolution.

�  A simple approach is to perform a brute force O(N2) nearest neighbor
calculation (within radius of 3 cells) utilizing an accelerator such as a GPU
(The P3M Method).

�  One could also use a tree method to reduce computation. We currently
have employed such an algorithm, but is not currently accelerated.

�  The Brute Force method is a simple algorithm which combined with the
GPU performance enchantment techniques discussed has proven to be a
factor of 4-5 faster then the CPU tree code.

�  NOTE: GPU code runs at approximately the same speed most redshift.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 27

imagine a cube of data

divide it into slabs

~3 grid units

imagine a GPU

Keep Repeating

~3 grid unit
cube

Keep Repeating

Optimization checklist:
�  Memory Shortage:

�  Algorithm only requires slabs of data, not the entire cube.

�  Lock-step execution:
�  As all particles in a group (chaining mesh) perform the same instruction -- calculate

force from neighboring meshes -- there is no divergent logic within a work group.

�  Global Memory Latency:
�  Each thread caches one particle from neighboring mesh into local memory; (thus only

one fetch per particle per group not per thread!)

�  Coalesced Memory Fetching?
�  Yes. As particle order does not matter for each mesh bin calculation, each thread can

do a local cache sequentially, further reducing latency.

�  Bank Conflicts:
�  Use broadcast from local memory as group of threads need to fetch the same

particles.

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 69

✔

✔

✔

✔

✔

Conclusion

�  GPU acceleration gains are completely determined by serial fraction of
the algorithm.

�  OpenCL allows one to use any heterogeneous platform vs. CUDA which
is a more mature but vendor specific language.

�  Multiple GPU specific considerations
�  Memory Storage

�  Lock-step execution

�  Global memory latency

�  Coalesced memory fetching

�  Bank Conflicts

�  Profilers exist to aid you in determining performance

�  Question? nfrontiere@gmail.com

ATPESC JULY 31, 2013

ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 70

OpenACC

�  Similar to OpenMP, utilized directives

�  Perhaps a good first step toward attempting acceleration.

�  With every higher level language, one loses sophistication

�  Example: Matrix Multiplication

ATPESC JULY 31, 2013
ARGONNE NATIONAL LABORATORY
NICHOLAS FRONTIERE 71

!$acc kernels
do k = 1,n1
 do i = 1,n3
 c(i,k) = 0.0
 do j = 1,n2
 c(i,k) = c(i,k) + a(i,j) * b(j,k)
 enddo
 enddo
enddo
!$acc end kernels

